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The New Operators in Topological Space

Nebojša Elez and Ognjen Papaz

Abstract. In this paper some of the properties of the boundary op-
erator were proved and the way we can define topology on some set
X using the boundary operator was shown. Then, we examined the
properties of the two new operators which we defined here and also we
showed how we can define topology on some set X using any of these
new operators.

1. Introduction

For a subset A of a topological space X we write A, A◦,FrA for the
closure, interior and boundary of a set A respectively.

We’ll use the following assertion, which is proved in [1],

(1) Fr(A ∪B) ⊆ FrA ∪ FrB.

We define the operator + on a topological space X in the following way:
for a subset A of X, A+ = A \A.

We define the operator ∗ on a topological space X in the following way:
for a subset A of X, A∗ = A \A◦.

2. Main results

Theorem 1. In every topological space X, the following conditions hold:

1) Fr ∅ = ∅;
2) FrA ∪ Fr(B) = (A ∩ FrB) ∪ Fr(A ∪B) ∪ (FrA ∩B);
3) Fr(FrA) ⊆ FrA;
4) Fr(X \A) = FrA.

If an operator ϕ on some set X satisfies the conditions 1)-4), then the
operator k defined in the following way: k(A) = A ∪ ϕ(A), is a closure
operator on X, and ϕ(A) = FrA for every subset A of a space X, in which
the topology is induced by k.
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64 The New Operators in Topological Space

Remark 1. Similar but different conditions were given in [2], namely there
were five conditions and it was shown that topology can be defined using
them.

Proof. Conditions 1) and 4) holds trivially.
Lets prove 2). From (1) it easily follows that

(A ∩ FrB) ∪ Fr(A ∪B) ∪ (FrA ∩B) ⊆ FrA ∪ FrB.

Because of the symmetry it remains to be proven that

FrA ⊆ (A ∩ FrB) ∪ Fr(A ∪B) ∪ (FrA ∩B).

1◦ Let x ∈ FrA ∩ FrB, x ∈ X \A, and x ∈ X \B.
It’s easy to conclude that x ∈ A ∪B and x ∈ X \ (A ∪ B)◦ i.e.
x ∈ Fr(A ∪B).

2◦ Let x ∈ FrA \ FrB, x ∈ X \B.
Then, x ∈ X\(A∪B)◦ because otherwise we would have that x ∈ A◦,
which is impossible.
Hence, x ∈ Fr(A ∪B).

3) Fr(FrA) ⊆ FrA = FrA.
Now, let the operator ϕ on some set X satisfies conditions 1)-4). For

operator k, defined with k(A) = A ∪ ϕ(A), we have:

1) k(∅) = ∅ ∪ ϕ(∅) = ∅;
2) A ⊆ A ∪ ϕ(A) = k(A);
3) k(k(A)) = k(A ∪ ϕ(A)) = A ∪ ϕ(A) ∪ ϕ(A ∪ ϕ(A)) ⊆

A ∪ ϕ(A) ∪ ϕ(A) ∪ ϕ(ϕ(A)) ⊆ A ∪ ϕ(A) ∪ ϕ(A) = k(A);
4) k(A ∪B) = A ∪B ∪ ϕ(A ∪B) ⊆

A ∪B ∪ ϕ(A) ∪ ϕ(B) = k(A) ∪ k(B) and
k(A) ∪ k(B) = A ∪ ϕ(A) ∪B ∪ ϕ(B) =
A ∪B ∪ (A ∩ ϕ(B)) ∪ ϕ(A ∪B) ∪ (B ∩ ϕ(A)) ⊆
A ∪B ∪ ϕ(A ∪B) = k(A ∪B).

Thus, we have proven that k is indeed the closure operator on X.
As for the last part, for every subset A of X we have

FrA = k(A) ∩ k(X \A)

= (A ∪ ϕ(A)) ∩ ((X \A) ∪ ϕ(X \A))

= (ϕ(A) ∩ (X \A)) ∪ (A ∩ ϕ(A)) ∪ ϕ(A)

= ϕ(A). �

Theorem 2. Let A and B be the subsets of a topological space X, and let

τ = {FrA,FrB,Fr(A∆B)} and
ξ = {Fr(A ∪B),Fr(A ∩B),Fr(A \B),Fr(B \A)}.
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The union of any two distinct elements of τ is equal to the union of any
three distinct elements of ξ. (Here ∆ stands for the symmetric difference.)

Proof. Firstly, we will show that

(2) FrA ∪ FrB = Fr(A \B) ∪ Fr(A ∩B) ∪ Fr(B \A).

Fr(A ∩B) = Fr(X \ (A ∩B))

= Fr((X \A) ∪ (X \B)) ⊆ Fr(X \A) ∪ Fr(X \B)
= FrA ∪ FrB.

Fr(A \B) = Fr(A ∩ (X \B)) ⊆ FrA ∪ FrB.

Analogously,
Fr(B \A) ⊆ FrA ∪ FrB.

So,
Fr(A \B) ∪ Fr(A ∩B) ∪ Fr(B \A) ⊆ FrA ∪ FrB.

On the other hand, we have

FrA ∪ FrB = Fr((A \B) ∪ (A ∩B)) ∪ Fr((B \A) ∪ (A ∩B))

⊆ Fr(A \B) ∪ Fr(A ∩B) ∪ Fr(B \A).

So we have proved (1).
If we put X \B in (1) instead of B, we get

FrA ∪ FrB = Fr(A \B) ∪ Fr(A ∩B) ∪ Fr(A ∪B).

If we put X \A in (1) instead of A we get

FrA ∪ FrB = Fr(A \B) ∪ Fr(A ∩B) ∪ Fr(B \A).

If we put X \A instead of A and X \B instead of B in (1), we get

FrA ∪ FrB = Fr(A ∪B) ∪ Fr(A ∩B) ∪ Fr(B \A).

According to what we have proven so far it suffices to prove that

FrA ∪ Fr(A∆B) = Fr(A \B) ∪ Fr(A ∩B) ∪ Fr(B \A)

= FrB ∪ Fr(A∆B).

From (2) we have that

FrA ∪ Fr(A∆B) = Fr(A \ (A∆B)) ∪ Fr(A ∩ (A∆B)) ∪ Fr((A∆B) \A)

= Fr(A ∩B) ∪ Fr(A \B) ∪ Fr(B \A)

= FrB ∪ Fr(A∆B). �

Theorem 3. In every topological space X, the following conditions hold:

1) ∅+ = ∅;
2) A ∩A+ = ∅;
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3) (A ∪B)+ = (A+ \B) ∪ (B+ \A);
4) (A+)+ ⊆ A.

If an operator ϕ on some set X satisfies the above conditions 1)-4), then
the operator k, defined in the following way: k(A) = A ∪ ϕ(A), is a closure
operator on X, and ϕ(A) = A+ for every subset A of a space X, in which
the topology is induced by k.

Proof. Conditions 1) and 2) holds trivially.
As for the third and fourth we have:

(A ∪B)+ = A ∪B \ (A ∪B)

= ((A \A) \B) ∪ ((B \B) \A)

= (A+ \B) ∪ (B+ \A).

(A+)+ = A+ \A+ ⊆ A \ (A \A) ⊆ A.

Now, let an operator ϕ on some set X satisfies the above conditions 1)-4).
For the operator k, defined with k(A) = A ∪ ϕ(A), we have:

1) ∅ = ∅ ∪ ϕ(∅) = ∅;
2) A ⊆ A ∪ ϕ(A) = k(A);
3) k(A∪B) = (A∪B)∪ϕ(A∪B) = (A∪B)∪ (ϕ(A) \B)∪ (ϕ(B) \A)

= A ∪ ϕ(A) ∪B ∪ ϕ(B) = k(A) ∪ k(B);
4) k(k(A)) = k(A) ∪ ϕ(k(A)) = k(A) ∪ ϕ(A ∪ ϕ(A))

= k(A) ∪ (ϕ(A) \ ϕ(A)) ∪ (ϕ(ϕ(A)) \ A) = k(A).

Thus, the operator k is a closure operator on X.
As for the last part, for every subset A of X we have

A+ = k(A) \A = (A ∪ ϕ(A)) \A = ϕ(A). �

Theorem 4. For every subset A of a topological space X, the following
conditions hold:

1) A = A ∪A+;
2) A+ = FrA \A;
3) FrA = A+ ∪ (X \A)+;
4) A+ ∪B+ = (A ∩B+) ∪ (A ∪B)+ ∪ (A+ ∩B);
5) A+ = ∅;
6) A is open if and only if A+ = FrA;
7) Ad =

⋃
B⊆AB

+ and A+ = Ad \ A, where Ad is the set of density
points of A.

Proof. We will prove some of the assertions, others hold trivially.
4) Firstly, we’ll show that the set on the LHS is subset of the set on the
RHS.
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It suffices to prove that A+ \ B ⊆ (A ∪ B)+, which is equivalent with
(A \A) \B ⊆ A ∪B \ (A ∪B), and this is equivalent with A ⊆ A ∪B.

Now we’ll show that the reversed inclusion holds. It suffices to prove
that (A ∪ B)+ ⊆ A+ ∪ B+. This is equivalent with A ∪B \ (A ∪ B) ⊆
(A \A) ∪ (B \B) which is obviously true.
7) B ⊆ A ⇒ B+ = B \ B ⊆ Bd ⊆ Ad. x ∈ Ad ⇒ x ∈ A \ {x} ⇒ x ∈
A \ {x} \ (A \ {x}) = (A \ {x})+ = B+,
for B ⊆ A.
A+ = A \A = (A ∪Ad) \A = Ad \A. �

Let C1 be the family of all closed subsets of a topological space X. For
n ∈ N let Cn+1 = {F \B|F ∈ C1 and B ∈ Cn}. Note that A ∈ Cn if and only
if

A = F1 \ (F2 \ . . . (Fn−1 \ Fn) . . .),
for some sequence F1, F2, . . . , Fn of the closed subsets of X.

Theorem 5. In every topological space X, the following holds: A ∈ Cn if
and only if A+n

= ∅. (We define A+n inductively, A+1
= A+ and A+n+1

=(
A+n)+.)
Proof. We’ll prove that A ∈ Cn ⇒ A+n

= ∅ by induction.
For n = 1 statement obviously holds. Let’s assume that the statement

holds for some natural number n. Let A ∈ Cn+1. Then A = F \B, where F
is closed and B ∈ Cn. We have that

A+ = F \B \ (F \B) = (F \B \ F ) ∪ (F \B ∩B) = F \B ∩B ∈ Cn.

Hence, A+n+1
= (A+)+

n
= ∅.

Now let’s prove the converse. If A+n+1
= ∅ then (A+)+

n
= ∅, and for B =

A+ we have that A = A \B ∈ Cn+1 because A is closed and B ∈ Cn+1. �

Corollary 1. Following two statements are immediate consequences of the
preceding theorem:

1) A is closed if and only if A+ = ∅;
2) A is locally closed i.e. difference of two closed sets if and only if

A+2
= ∅.

Remark 2. The authors are not certain whether or not
⋃+∞

n=1 Cn is equal to
the algebra on a set X, generated by its topology.

Theorem 6. In every topological space X, the following conditions hold:

1) X∗ = ∅;
2) A∗ ⊆ A;
3) (A ∩B)∗ = (A∗ ∩B) ∪ (A ∩B∗);
4) (A∗)∗ = A∗.
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If an operator ϕ on some set X satisfies the above conditions 1)-4), then
the operator Int defined in the following way: Int(A) = A \ ϕ(A), is an
interior operator on X, and ϕ(A) = A∗ for every subset A of a space X, in
which the topology is induced by Int.

Proof. Conditions 1) and 2) hold trivially.
3) (A ∩B)∗ = (A ∩B) \ (A ∩B)◦ = (A ∩B) ∩ (X \ (A◦ ∩B◦)) =

(A ∩ (X \A◦) ∩B) ∪ (A ∩B ∩ (X \B◦)) = (A∗ ∩B) ∪ (A ∩B∗).
4) (A∗)∗ = (A \A◦) \ (A \A◦)◦ = A \A◦ = A∗.

Now, let the operator ϕ on some set X satisfies the above conditions 1)-4).
For operator Int, defined with Int(A) = A \ ϕ(A), we have:

1) Int(X) = X \ ϕ(X) = X;
2) Int(A) = A \ ϕ(A) ⊆ A;
3) Int(A∩B) = (A∩B)\ϕ(A∩B) = (A∩B)\((ϕ(A)∩B)∪(A∩ϕ(B)) =

(A \ ϕ(A)) ∩ (B \ ϕ(B)) = Int(A) ∩ Int(B).
4) Int(Int(A)) = (A \ ϕ(A)) \ ϕ(A \ ϕ(A)) ⊇

(A \ ϕ(A)) \ (ϕ(A) ∩ ϕ(X \ ϕ(A))) ⊇
(A \ ϕ(A)) \ (ϕ(A) ∩ (X \ ϕ(A))) = Int(A).

Thus, we have proven that Int is an interior operator on X.
As for the last part, for every subset A of X we have

A∗ = A \ Int(A) = A \ (A \ ϕ(A)) = ϕ(A) ∩A = ϕ(A). �
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